Exercise 55

Use mathematical induction (page 72) to show that if $f(x)=x e^{x}$, then $f^{(n)}(x)=(x+n) e^{x}$.

Solution

Show that the given formula is true for the base case $n=0$.

$$
\begin{gathered}
f^{(0)}(x)=(x+0) e^{x} \\
f(x)=x e^{x}
\end{gathered}
$$

Now assume that the inductive hypothesis is true for a certain integer k,

$$
\begin{equation*}
f^{(k)}(x)=(x+k) e^{x}, \tag{1}
\end{equation*}
$$

and show that the same formula is true for the consecutive integer $k+1$,

$$
f^{(k+1)}(x)=[x+(k+1)] e^{x} .
$$

Take the derivative of both sides of equation (1) with respect to x.

$$
\begin{aligned}
\frac{d}{d x}\left[f^{(k)}(x)\right] & =\frac{d}{d x}\left[(x+k) e^{x}\right] \\
\frac{d}{d x}\left(\frac{d^{k} f}{d x^{k}}\right) & =\left[\frac{d}{d x}(x+k)\right] e^{x}+(x+k)\left[\frac{d}{d x}\left(e^{x}\right)\right] \\
\frac{d^{k+1} f}{d x^{k+1}} & =(1) e^{x}+(x+k)\left(e^{x}\right) \\
f^{(k+1)}(x) & =e^{x}+x e^{x}+k e^{x} \\
& =(1+x+k) e^{x} \\
& =[x+(k+1)] e^{x}
\end{aligned}
$$

Therefore, by the principle of mathematical induction,

$$
f^{(n)}(x)=(x+n) e^{x} .
$$

